Phenotypic Variation and Natural Selection at Catsup, a Pleiotropic Quantitative Trait Gene in Drosophila
نویسندگان
چکیده
Quantitative traits are shaped by networks of pleiotropic genes . To understand the mechanisms that maintain genetic variation for quantitative traits in natural populations and to predict responses to artificial and natural selection, we must evaluate pleiotropic effects of underlying quantitative trait genes and define functional allelic variation at the level of quantitative trait nucleotides (QTNs). Catecholamines up (Catsup), which encodes a negative regulator of tyrosine hydroxylase , the rate-limiting step in the synthesis of the neurotransmitter dopamine, is a pleiotropic quantitative trait gene in Drosophila melanogaster. We used association mapping to determine whether the same or different QTNs at Catsup are associated with naturally occurring variation in multiple quantitative traits. We sequenced 169 Catsup alleles from a single population and detected 33 polymorphisms with little linkage disequilibrium (LD). Different molecular polymorphisms in Catsup are independently associated with variation in longevity, locomotor behavior, and sensory bristle number. Most of these polymorphisms are potentially functional variants in protein coding regions, have large effects, and are not common. Thus, Catsup is a pleiotropic quantitative trait gene, but individual QTNs do not have pleiotropic effects. Molecular population genetic analyses of Catsup sequences are consistent with balancing selection maintaining multiple functional polymorphisms.
منابع مشابه
Mutations and quantitative genetic variation: lessons from Drosophila.
A central issue in evolutionary quantitative genetics is to understand how genetic variation for quantitative traits is maintained in natural populations. Estimates of genetic variation and of genetic correlations and pleiotropy among multiple traits, inbreeding depression, mutation rates for fitness and quantitative traits and of the strength and nature of selection are all required to evaluat...
متن کاملQTL mapping of heading date and plant height in Barley cross “Azumamugi”דKanto Nakate Gold
To identify quantitative trait loci (QTLs) controlling heading date and plant height, ninety nine F13 recombinant inbred lines (RILs) derived from barley cultivars Azumamugi × Kanto Nakate Gold cross were evaluated. The field trails were conducted at randomized complete block design with two and three replications in 2004 and 2005, respectively. Significant differences and transgrassive segrega...
متن کاملEvolution of adaptive phenotypic variation patterns by direct selection for evolvability.
A basic assumption of the Darwinian theory of evolution is that heritable variation arises randomly. In this context, randomness means that mutations arise irrespective of the current adaptive needs imposed by the environment. It is broadly accepted, however, that phenotypic variation is not uniformly distributed among phenotypic traits, some traits tend to covary, while others vary independent...
متن کاملPleiotropic mutations are subject to strong stabilizing selection.
The assumption that pleiotropic mutations are more deleterious than mutations with more restricted phenotypic effects is an important premise in models of evolution. However, empirical evidence supporting this assumption is limited. Here, we estimated the strength of stabilizing selection on mutations affecting gene expression in male Drosophila serrata. We estimated the mutational variance (VM...
متن کاملAnalysis of natural variation reveals neurogenetic networks for Drosophila olfactory behavior.
Understanding the relationship between genetic variation and phenotypic variation for quantitative traits is necessary for predicting responses to natural and artificial selection and disease risk in human populations, but is challenging because of large sample sizes required to detect and validate loci with small effects. Here, we used the inbred, sequenced, wild-derived lines of the Drosophil...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Current Biology
دوره 16 شماره
صفحات -
تاریخ انتشار 2006